Twee exponentiële vergelijkingen a. 2x=44x+6b. 272x = (1/3)-x+2Wat is x? J. Student universiteit - zaterdag 1 september 2007 Antwoord a.$\eqalign{ & 2^x = 4^{4x + 6} \cr & 2^x = \left( {2^2 } \right)^{4x + 6} \cr & 2^x = 2^{8x + 12} \cr & x = 8x + 12 \cr & 7x = - 12 \cr & x = - 1\frac{5}{7} \cr}$b.$\eqalign{ & 27^{2x} = \left( {\frac{1}{3}} \right)^{ - x + 2} \cr & \left( {3^3 } \right)^{2x} = \left( {3^{ - 1} } \right)^{ - x + 2} \cr & 3^{6x} = 3^{x - 2} \cr & 6x = x - 2 \cr & 5x = - 2 \cr & x = - \frac{2}{5} \cr}$ zondag 2 september 2007 ©2001-2024 WisFaq
a. 2x=44x+6b. 272x = (1/3)-x+2Wat is x? J. Student universiteit - zaterdag 1 september 2007
J. Student universiteit - zaterdag 1 september 2007
a.$\eqalign{ & 2^x = 4^{4x + 6} \cr & 2^x = \left( {2^2 } \right)^{4x + 6} \cr & 2^x = 2^{8x + 12} \cr & x = 8x + 12 \cr & 7x = - 12 \cr & x = - 1\frac{5}{7} \cr}$b.$\eqalign{ & 27^{2x} = \left( {\frac{1}{3}} \right)^{ - x + 2} \cr & \left( {3^3 } \right)^{2x} = \left( {3^{ - 1} } \right)^{ - x + 2} \cr & 3^{6x} = 3^{x - 2} \cr & 6x = x - 2 \cr & 5x = - 2 \cr & x = - \frac{2}{5} \cr}$ zondag 2 september 2007
zondag 2 september 2007