\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Re: Criterium van Cauchy

 Dit is een reactie op vraag 51741 
Beste,
Ik geraak wel wijs uit het bewijs van het collegedictaat van E.P. van den Ban op blz. 29. dat u mij doorlinkte, maar dit is blijkbaar de afgezwakte versie van het bewijs dat wij in de les gezien hebben. Ik heb mijn notities uit die les hieronder geüpload opdat u misschien bij elke stap kan uitleggen waarom ze dat doen en welke stelling ze toepassen.
Want de dingen komen precies uit de lucht gevallen.

Dank bij voorbaat

Tamara
Student universiteit België - woensdag 29 augustus 2007

Antwoord

Beste Tamara,

Misschien dat onderstaand dictaat duidelijker is. Zie blz. 18 en 19.

http://homepages.vub.ac.be/~scaenepe/wiskundedrie.pdf

De belangrijkste stap is:
Als voor elke n vanaf een zekere waarde (n0)geldt:
nÖ(un)= q , dan geldt:un= qn.
Dat betekent dat (vanaf n0) alle termen kleiner zijn dan qn.
åqn is een meetkundige reeks, waarvan je weet dat hij convergeert als q1, maar dan convergeert de reeks åun ook .

Als het nog niet duidelijk is, geef dan duidelijk aan welke stap je niet begrijpt in je dictaat, dan zal ik dat toelichten.
Succes.

ldr
vrijdag 31 augustus 2007

©2001-2024 WisFaq