Hoofdstelling van de algebra en Gauss
hallo,
Is dit een bewijs van Gauss voor de hoofdstelling van de algebra?
"Op hoofdlijnen loopt het bewijs (uit het ongerijmde) als volgt. Stel dat de complexe veeltermfunctie geen nulpunten heeft. Dan is 1 / P(x) een begrensde analytische functie waarvan het domein het hele complexe vlak omvat. En dus is Q(x) = 1 / P(1 / x) een begrensde analytische functie waarvan het domein alle complexe getallen behalve 0 omvat.
Omdat Q begrensd is in de omgeving van 0, is het punt 0 een ophefbare singulariteit. Daaruit volgt dat 1 / P(x) voor x ver weg van 0 naar een constante convergeert. Maar de functiewaarde van een globale analytische functie (zoals 1 / P(x)) kan geschreven worden als een lijnintegraal langs een willekeurig grote cirkel met middelpunt x. Daaruit volgt dat 1 / P, en dus ook P, constant is."
bron: Wikipedia
Is er misschien ook nog een ander bewijs van Gauss hiervoor want dit is vrij ingewikkeld.
groetjes
do
2de graad ASO - woensdag 11 april 2007
Antwoord
Zie hieronder voor een reeks bewijzen. Vooral voor een veeltermen met oneven graad is het een stuk makkelijker. Dan heb je namelijk geen complexe getallen nodig.
Het bewijs is inderdaad niet eenvoudig. Het eind is mij ook nog niet helemaal duidelijk. Maar misschien heb je hier wat aan: met een "ophefbare singulariteit" wordt bedoeld dat je weliswaar niet x=0 mag invullen maar dat de limx®0Q(x) wel gewoon een getal oplevert. Anders zou Q namelijk naar oneindig moeten gaan terwijl er staat dat Q rond nul begrensd is (een voorbeeld: Q(x)=(1/x)/(1+1/x))
Groet. Oscar
Zie fundamental theorem of algebra
os
woensdag 11 april 2007
©2001-2024 WisFaq
|