\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Re: Bewijs: Harmonische wisselreeks is dalend

 Dit is een reactie op vraag 49284 
Ik gebruik juist het criterium van Leibniz voor het bewijzen dat de harmonische wisselreeks convergent is. Daarvoor moet ik toch eerst bewijzen dat de rij dalend is en dat de limiet van de n-de term nul is. Ik begrijp je antwoord niet goed. Het bewijzen dat deze harmonische wisselreeks dalend is staat toch los van het criterium van Leibniz nee?

Pieter
Student Hoger Onderwijs België - maandag 19 februari 2007

Antwoord

s(1)=1
s(2)=0.5
s(3)=0.8333..
s(4)=0.5833..
s(5)=0.7833..
Is dit een dalende reeks? Nee toch?

Misschien moet je Leibniz Criterion eerst maar eens nauwkeurig bestuderen.


maandag 19 februari 2007

©2001-2024 WisFaq