\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Een matrix ontbinden in een diagonalizeerbare matrix en een nilpotente matrix

Hallo!
Ik heb een matrix      3 -1 -1
A= 3 0 -2
-1 0 2
Deze matrix moet ik ontbinden in een diagonalizeerbare matrix D en een nilpotente matrix N, zodanig dat A=D+N en
[D,N]=0 (D en N commuteren dus).
Ik heb op dit moment geen flauw benul hoe ik dit kan doen. Het zal iets makkelijks zijn, maar ik zie het even niet.

Alvast bedankt voor het antwoorden :)

groeten

Mick K
Student universiteit - dinsdag 7 november 2006

Antwoord

Mick,
Gemakkelijk is het niet: Bepaal de eigenwaarden van A.Noem deze lj,
j=1,..,k.Zij Pj de projectie op de gegeneraliseerde eigenruimte van lj.
Dan is het diagonaliseerbare deel D=åljPj,j=1,..,k.

kn
vrijdag 10 november 2006

©2001-2024 WisFaq