\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Veeltermen

Hallo!

Nadat ik de theorie bestudeerd heb en alle oefenopgaven heb kunnen maken stuit ik in het boek wederom op geniepige opgaven. Ik moet de wortels van de volgende veeltermen vinden:

x2-6x+13
(13 is toch een priem getal?? in het antwoordenboek word gebruik gemaakt van een i teken)

x2+2x+2
(dus moet ik een factor van 2 vinden die opgeteld 2 is??)

x4-1
(in hoeverre gaat de ABC regel hier op?)

Bedankt weer!

Peter
Student universiteit - zaterdag 16 september 2006

Antwoord

De 'normale' product-som-methode (voor reële coëfficiënten) gaan niet lukken. 1·13 of -1·-13 geeft in ieder geval opgeteld geen -6. De grafiek van y=x2-6x+13 heeft dus geen (reële) nulpunten.

Het berekenen van complexe nulpunten gaat handig met kwadraatafsplitsen

x2-6x+13=0
(x-3)2+4=0
(x-3)2=-4
x-3=±Ö(-4)
x-3=±2Öi
x=3±2Öi

Bij 2. hetzelfde verhaal...
Zie ook ontbinden in factoren

De ABC-formule geldt voor vergelijkingen van de vorm ax²+bx+c=0, maar bij 3. herken je het merkwaardig product a2-b2, dus:

x4-1=(x2+1)(x2-1)=(x2+1)(x-1)(x+1)


zaterdag 16 september 2006

©2001-2024 WisFaq