Ggd schrijven als lineaire combinatie
Hallo, Bedoeling is dat ik ggd(100,70) schrijf als lineaire combinatie. Dit is wat ik tot nog toe heb: 100 = 70 + 30 70 = 30 · 2 + 10 30 = 10 · 3 De ggd(100,70) = 10 Om dit te schrijven als lineaire combinatie ga ik verder als volgt: 30 = 100 - 70 10 = 70 - 30 · 2 10 kan dus ook als volgt worden geschreven: 10 = 70 - (100 - 70) · 2 Tot hiertoe geen enkel inzichtsprobleem. De laatste stap (zo zegt de cursus) is echter dit: 10 = 3 · 70 - 2 · 100 Hoe komt men tot deze laatste stap? Ik zie het verband niet met de vorige; iemand die kan/wil helpen? Hartelijk dank!
Pieter
Student Hoger Onderwijs België - zaterdag 27 mei 2006
Antwoord
je hebt: 10=70-(100-70)·2. Het is nu verleidelijk 100-70 als 30 te schrijven maar dat moet je hier niet doen, immers je wilt 10 als lineaire combinatie van 100 en 70 schrijven. In plaats daarvan ga je de haakjes wegwerken: 10=70-100·2+70·2 Dus 10=70+2·70-2·100 Dus 10=3·70-2·100.
zaterdag 27 mei 2006
©2001-2024 WisFaq
|