Eerste en tweede afgeleide
een wielrenster rijdt een tijdrit. het verband tussen de afgelegde weg s in km en de tijd t in minuten wordt gegeven door de functie s(t) = -.ooo15t^3 + 0.017t^2 + 0.116t Op welk tijdstip was de snelheid maximaal en hoe groot was die maximale snelheid? in de uitwerkingen zeggen ze dat de snelheid maximaal is als s'max is dus s''0 is. Waarom is dat zo, waarom moet je de tweede afgeleide gebruiken en niet de eerste?
Anne V
Leerling bovenbouw havo-vwo - maandag 27 maart 2006
Antwoord
Beste Anne, Om mogelijke extrema (dit kunnen maxima of minima zijn) van een functie f(x) te vinden bereken je de afgeleide en stel je die gelijk aan 0, dus oplossen van f'(x) = 0. Nu is de afgelegde weg s(t) gegeven, maar de snelheid is de afgeleide van de afgelegde weg naar de tijd: v(t) = s'(t) = ds(t)/dt. Om dan de extrema van v(t) te vinden moeten we oplossing: v'(t) = 0. Maar vermits v(t) = s'(t) hebben we dat v'(t) = s"(t), de tweede afgeleide dus. Merk op dat dit precies a(t) is, de versnelling. mvg, Tom
maandag 27 maart 2006
©2001-2024 WisFaq
|