\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Lengte deellijn

gegeven: rechthoekige driehoek ABC, hoek ACB = 90°, hoek ACD = hoek BCD = 45°, CD is deellijn van de rechte hoek C

gevraagd de lengte van deellijn CD bij een gegeven lengte van AC en een gegeven lengte van BC.

Fred v
Student universiteit - zaterdag 17 december 2005

Antwoord

Noem AC even p en BC even Q.
Bereken ÐBAC via sin(ÐBAC)=q/Ö(p2+q2)
Dan is ÐCDA=180°-45°-ÐBAC.
Volgens de sinusregel geldt nu CD/sin(ÐBAC)=p/sin(ÐCDA), dus
CD=p*sin(ÐBAC)/sin(ÐCDA)


zaterdag 17 december 2005

©2001-2024 WisFaq