Euclidische deling
Als x4+4x3+6px2+4qx+r deelbaar is door x3+3x2+9x+3 , dan is p·(q+r) gelijk aan wat?
Mijn vraag hoeft niet perse beantwoord te woorden, maar ik zou graag willen weten waar ik uitleg kan vinden over hoe je zoiets op moet lossen!
Kim
Student universiteit - dinsdag 10 mei 2005
Antwoord
x3+3x2+9x+3/x4+4x3+6px2+4qx+r\x+1 x4+3x3+9x2+3x ----------------- - x3+(6p-9)x2+(4q-3)x+r x3+3x2+9x+3 ----------- - (6p-12)x2+(4q-12)x+(r-3) 6p-12=0 Þ p=2 4q-12=0 Þ q=3 r-3=0 Þ r=3
Dus dan zal wel p(q+r)=2·(3+3)=12 zijn...
dinsdag 10 mei 2005
©2001-2024 WisFaq
|