\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Afgeleide met logaritmen

Het differentiëren van de volgende functies vind ik vrij lastig. Ik zou graag een oplossing zien in verschillende stappen.
  1. ln 3x - x
  2. (ln x)2
  3. Om een buigpunt van een functie te vinden moet je toch de afgeleide functie differentiëren. Je krijgt dan als het ware f''(x)=...
Alvast bedankt voor het beantwoorden van mijn vragen

mc
Leerling bovenbouw havo-vwo - dinsdag 9 april 2002

Antwoord

1)

Misschien lost vervanging van ln(3x) door ln3 + ln(x) je probleem op?
Dat je dit mag doen berust op de logaritmestelling loga + logb = log(a.b)

Als je nu bedenkt dat ln3 een "gewoon" getal is en dat een getal bij differentiëren gelijk wordt aan 0, dan ben je er: f '(x) = 0 + 1/x - 1 = 1/x - 1

Merk en passant op dat je het ook zo kunt doen met bijv. ln(15x). Als je dat splitst in ln(15) + ln(x), dan zie je dat wéér de constante ln15 in 0 overgaat.
Kortom: de afgeleide van ln(ax)=1/x , los van het getal a.

2)

Je tweede probleem kun je bijv. aanpakken via de produktregel.
f(x)=lnx . lnx

Dat geeft dan: f '(x)=1/x . lnx + lnx . 1/x = 2.ln(x)/x

Het gaat sneller met de zogenaamde kettingregel, maar ik weet niet of je die al geleerd hebt.

3)

Je opmerking over de buigpunten is correct.

MBL
dinsdag 9 april 2002

©2001-2024 WisFaq