Logaritmische vergelijkingen
5log x3 = 5log x
Kan het zijn dat de uitkomst 1 is?
xlog (2x+3) = 2
Kan je die oefening eigenlijk oplossen, want je kent de a niet of moet je de 10log nemen?
kimber
Overige TSO-BSO - zaterdag 12 juni 2004
Antwoord
Hanteer de Rekenregels machten en logaritmen en kijk goed naar de voorwaarden.
Bij de eerste vergelijking:
5log x3 = 5log x (x0) x3=x x3-x=0 x(x2-1)=0 x=0 of x2=1 x=0 of x=1 of x=-1 Alleen x=1 voldoet inderdaad!
Bij de tweede vergelijking:
xlog(2x+3)=2 (x0, x¹1 en 2x+30)
Toepassen van de definitie geeft: x2=2x+3 x2-2x-3=0 (x-3)(x+1)=0 x=3 of x=-1
Alleen x=3 voldoet.
Zie ook Logaritmische vergelijkingen voor een ander voorbeeld.
zaterdag 12 juni 2004
©2001-2024 WisFaq
|