Bewijzen dat een propositie een tautologie is
Ik zou graag antwoord krijgen op de volgende vraag: Toon aan dat de volgende propositie een tautologie is , zonder gebruik te maken van waarheidstabellen. Geef bij elke stap een verantwoordring. (Ø(QÞR)ÙØ)ØQÞ(RÚS)))Þ(ØRÞS0 (negatie(Q implicatie R) conjunctie negatie(negatie Q implicatie (R disjunctie S))) implicatie (negatie R implicatie S)
Elke S
Student hbo - vrijdag 6 februari 2004
Antwoord
Er zijn twee tikfoutjes in je opgave geslopen: (Ø(QÞR)ÙØ(ØQÞ(RÚS)))Þ(ØRÞS). (1) Pas nu de contrapositie toe: (1) Û (Ø(ØRÞØQ)ÙØ(ØQÞ(RÚS)))Þ(ØRÞS). (2) Volgens de Stelling van De Morgan: (2) Û Ø((ØRÞØQ)Ú(ØQÞ(RÚS)))Þ(ØRÞS). (3) Conform de stelling dat (AÞB) Û (ØAÚB) geldt: (3) Û Ø((ØØRÚØQ)Ú(ØØQÚ(RÚS)))Þ(ØØRÚS). (4) Haal de dubbele ontkenningen weg: (4) Û Ø((RÚØQ)Ú(QÚ(RÚS)))Þ(RÚS). (5) Gebruik nu de associativiteit van Ú: (5) Û Ø((RÚ(ØQÚQ)ÚR)ÚS)Þ(RÚS). Bedenk nu dat (ØQÚQ) een tautologie is. Dan is (RÚ(ØQÚQ)ÚR)ÚS dus ook een tautologie. De ontkenning daarvan, Ø((RÚ(ØQÚQ)ÚR)ÚS), is dus een contradictie. Deze contradictie is echter de premisse van een implicatie en derhalve is de implicatie een tautologie.
KLY
vrijdag 6 februari 2004
©2001-2024 WisFaq
|