Een logaritmische vergelijking oplossen
Hallo,
Er is een logaritmische vergelijking die ik maar niet oplossen kan. " 2 log x + 1 = log (19x + 2) . De oplossing moet 2 zijn en ik kom alles uit behalve 2. Ik heb onder andere de volgende bewerkingen al geprobeerd
a) log x2 + 1 = log 38x deze = log x2 + log 10 = log 38x -- x2 + 10 - 38x = 0 als ik dit verder uitreken, dan kom ik GEEN 2 uit.
b) 2 log x + log 10 = log 19x + log 2 = 2x + 10 = 19x + 2 Als ik dit verder uireken, kom ik ook geen '2' uit. Ook niet wanneer ik
x2 + 10 = 19x + 2 uitreken.
IK zou graag willen weten waar ik fout zit en hoe ik deze logaritme verder JUIST kan uitrekenen en of de uitkomst INDERDAAD 2 is.
Dank u
Na'ke
3de graad ASO - zaterdag 1 november 2003
Antwoord
Je maakt er wel een rommetje van! Als ik jou was zou ik me 'zeer streng' aan de regels houden, dat maakt het een stuk makkelijker!
Als ik goed kijk wil je de volgende regels gebruiken, maar pas je die te pas en te onpas toe.
1: p·log(x) = log(xp) 2: log(a) + log(b) = log(a·b)
Dan krijgen we dus: 2·log(x) + 1 = log(19x + 2) log(x2) + 1 = log(19x + 2) (zie 1) log(x2) + log(10) = log(19x + 2) log(10x2) = log(19x + 2) (zie 2) 10x2 = 19x + 2 Enz... (Niet vergeten: x0)
Zie Rekenregels machten en logaritmen.
Hopelijk lukt het zo?
zaterdag 1 november 2003
©2001-2024 WisFaq
|