Differentieren van een functie met twee variabelen
Ik ben met een vraag bezig waarbij het gaat over een schoenendoos zonder deksel met volume V. Een voorwaarde hierbij is dat hij uit zo min mogelijk karton moet bestaan. Nu moet ik de hoogte en de breedte in de lengte van de doos uitdrukken. Ik weet nu niet goed hoe ik moet beginnen en wat ik moet gebruiken. Hopelijk kunnen jullie me helpen, Bij voorbaat dank.
Jorrit
Student universiteit - donderdag 12 juni 2003
Antwoord
Noteer de afmetingen met de voor zich sprekende notaties L, B en H, en stel de totale oppervlakte voor door A. Dan is A = 2HB + 2HL + BL V = HBL Met die laatste kunnen we een van de drie afmetingen schrijven als functie van de twee andere. Zo is bijvoorbeeld L = V/(HB) zodat voor A dan geldt A = 2HB + 2V/B + V/H Deze uitdrukking afleiden naar B en naar H en die uitdrukkingen nul stellen levert je dan de gevraagde afmetingen H = 2-2/3 V1/3 B = 21/3 V1/3 L = 21/3 V1/3 Dat B en L gelijk kon je met een beetje intuitie natuurlijk al voorspeld hebben (waardoor je meteen ook het probleem naar een dimensie had kunnen transformeren).
donderdag 12 juni 2003
©2001-2024 WisFaq
|