Integreren van parameterkrommen
Hoe integreer je een parameterkromme (om oppervlakte onder grafiek te berekenen). Hoe integreer je bijv. x=cos t; y=sint en x=2 sin 2(t+0.5p); y=4 cos 4t. Gelieve de rekenregels erbij te schrijven. Ik ben een 6VWO-er, maar het maakt niet uit als het iets moeilijker is...
henk
Leerling bovenbouw havo-vwo - vrijdag 16 mei 2003
Antwoord
Ik herinner me de volgende formule A = 1/2 $\int{}$[xdy - ydx] In het eerste geval krijg je dan xdy = cos(t) d sin(t) = cos2(t) dt ydx = sin(t) d cos(t) = -sin2(t) dt A = 1/20$\int{}$2$\pi$[cos2(t)+sin2(t)]dt = $\pi$ en dat is inderdaad de oppervlakte van een cirkel met straal 1. Voor het tweede geval moet ik natuurlijk wel weten tussen welke grenzen t varieert.
vrijdag 16 mei 2003
©2001-2024 WisFaq
|