\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Re: halverings- en verdubbelingsformule

 Dit is een reactie op vraag 10354 
Hallo,

Het is zeker een stuk duidelijker! Nog en klein vraagje. Bij de tweede vorm van cos(2x), kom je op een gegeven ogenblik op 2cos2(x)-(cos2(x)+sin2(x))=enz.. Hoe kom je aan die 2cos2(x)?

Nogmaals bedankt,
George van Klaveren.

George
Iets anders - maandag 28 april 2003

Antwoord

Hallo George,

cos(2x)=cos2(x)-sin2(x)=cos2(x)+cos2(x)-cos2(x)-sin2(x)

Ik heb hier een cos2(x) toegevoegd en er meteen weer afgehaald; hierdoor blijft de uitkomst natuurlijk hetzelfde, maar geeft de mogelijkheid om cos2(x)+sin2(x) te vervangen door 1:

...=cos2(x)+cos2(x)-(cos2(x)+sin2(x))=2cos2(x)-1

duidelijker?

groet,

Casper

cz
dinsdag 29 april 2003

©2001-2024 WisFaq