Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Overlapping bij diagonaal vouwen van een rechthoekig vel

Bij het diagonaal vouwen van een rechthoekig vel is de 'overlapping' (een gelijkbenige driehoek) afhankelijk van de verhouding lengte/breedte van de rechthoek.

Uiterste: bij vierkant (lengte=breedte) is de overlapping 100% en resteert een oppervlakte van 50%.

Hoe is de berekening bij een rechthoek?
Met dank

Jan Ka
Iets anders - donderdag 12 januari 2023

Antwoord

Hallo Jan,

Stel b=breedte van de rechthoek, en de lengte a·b met a$ \ge $ 1, zie de figuur hieronder. De oppervlakte van het totale vel is dan ab2.

q97511img1.gif

Wanneer we de korte zijde met een schuine vouw op de lange zijde vouwen, dan ontstaat een overlap in de vorm van een rechthoekige gelijkzijdige driehoek A met rechthoekszijden b, en een rechthoek B met zijden b en (a-1)b.

De oppervlakte OA van driehoek A is 0,5b2, de oppervlakte OB van rechthoek B is (a-1)b2. De bedoelde overlapping is dan:

OA/(OA+OB) = 0,5b2/(0,5b2+(a-1)b2) = 1/(2a-1).
Vermenigvuldig dit met 100 om de overlapping in procenten uit te drukken.

De resterende oppervlakte is OA+OB = 0,5b2+(a-1)b2 = (a-0,5)b2. Dit is (a-0,5)b2/(ab2)·100% van de oorspronkelijke oppervlakte, ofwel (a-0,5)/a·100%.

GHvD
donderdag 12 januari 2023

 Re: Overlapping bij diagonaal vouwen van een rechthoekig vel 

©2001-2024 WisFaq