Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Inhoud afgeknotte cilinder

Hoe bereken je de inhoud van een afgeknotte cilinder?

Imp
Iets anders - dinsdag 10 mei 2022

Antwoord

Je kunt dit opvatten als de helft van een complete cilinder met een doorsnede van 8 en een hoogte van 8. Bereken de inhoud en neem de helft voor het lichaam uit het plaatje.

$
\eqalign{
& I_{cilinder} = \pi r^2 h \cr
& I_{cilinder} = \frac{1}
{4}\pi d^2 h \cr
& I_{d = 8,h = 8} = \frac{1}
{4}\pi \cdot 8^2 \cdot 8 = 128\pi \cr
& I_{afgeknot} = 64\pi \approx 201,1 \cr}
$

Of als formule met $d=8$, $h_1=6$ en $h_2=2$:

$
\eqalign{
& I_{afgeknot} = \frac{1}
{2} \cdot \frac{1}
{4}\pi d^2 h \cr
& I_{afgeknot} = \frac{1}
{8}\pi d^2 \left( {h_1 + h_2 } \right) \cr
& I_{afgeknot} = \frac{1}
{8}\pi \cdot 8^2 \left( {6 + 2} \right) = 64\pi \approx 201,1 \cr}
$

Kan ook...:-)

WvR
dinsdag 10 mei 2022

©2001-2024 WisFaq