Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 9631 

Re: limiet (x + tan x ) / (1 - cos x)

sorry, het lukt nog steeds niet! Ik kom op 1 uit i.p.v. 2.

Martij
Student universiteit - woensdag 9 april 2003

Antwoord

OKay, dan gaan we 't even stap voor stap proberen uit te werken.

Ik neem aan dat je nu in ieder geval wel weet wat de regel van De L'Hospital is.

Eerst de afgeleide van de teller:
[xtanx]'=[x]'tanx + x.[tanx]'=tanx + x/cos2x
afgeleide van de noemer:
[1-cosx]'=sinx

zou je nou de limiet nemen van
x¯0 {tanx + x/cos2x)/sinx dan dreig je nog steeds 0/0 te krijgen.
Dussss: nòg maar een keer De L'Hospital toegepast:

afgeleide teller:
[tanx + x/cos2x]'
= 1/cos2x + (cos2x - x.2sinxcosx)/cos4x
afgeleide noemer:
[sinx]'=cosx

vul je 0 in in de teller, krijg je 1/1 + (1-0.2.0.1)/1 = 2
vul je 0 in in de noemer, krijg je 1

ofwel de uitkomst van de limiet wordt 2/1 = 2

groeten,
martijn

mg
woensdag 9 april 2003

©2001-2024 WisFaq