Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 93547 

Re: Convergentie vraagstuk

Ok maar wanneer mag je asymptotische equivalentie op oneindig dan gebruiken?

Mike
Student universiteit België - vrijdag 15 april 2022

Antwoord

Daar is geen eenduidig antwoord op te geven.
Bijvoorbeeld
$$\lim_{n\to\infty}\frac{1+\frac1n}{1-\frac1n}=1
\text{ en }
\lim_{n\to\infty}\frac{1+\frac1{n^2}}{1-\frac1n}=1
$$maar
$$\lim_{n\to\infty}\frac{\ln(1+\frac1n)}{\ln(1-\frac1n)}=-1
\text{ en }
\lim_{n\to\infty}\frac{\ln(1+\frac1{n^2})}{\ln(1-\frac1n)}=0
$$Of
$$\lim_{n\to\infty}\frac{n+\sqrt n}{n-\sqrt n}=1
$$maar
$$\lim_{n\to\infty}\frac{e^{n+\sqrt n}}{e^{n-\sqrt n}}=\infty
$$Zo kun je voorbeelden blijven genereren tegen zo ongeveer elke algemene stelling die je zou willen gebruiken.

Daarom gebruik ik die equivalentie alleen op kladpapier en bepaal ik voor alle zekerheid toch expliciet de uiteindelijke limiet.

kphart
vrijdag 15 april 2022

 Re: Re: Convergentie vraagstuk 

©2001-2024 WisFaq