Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bewijs

tan(x/2) = (1 - cos(2x))/(2sin(2x) + sin(2x))
tan(x/2) = sin(x)/(1 + sin(x))

Eline
2de graad ASO - dinsdag 18 januari 2022

Antwoord

't Zou leuk kunnen zijn maar beide uitdrukkingen zijn niet juist. Bedoelde je mogelijkerwijs deze twee?

$
\eqalign{
& \tan \left( {\frac{x}
{2}} \right) = \frac{{1 - \cos \left( {2x} \right)}}
{{2\sin (x) + \sin (2x)}} \cr
& \tan \left( {\frac{x}
{2}} \right) = \frac{{\sin (x)}}
{{1 + \cos (x)}} \cr}
$

Of heb ik iets gemist?Nschrift
Die tweede is trouwens niet al te moeilijk denk ik:

$
\eqalign{
& \tan \left( {\frac{x}
{2}} \right) = \frac{{\sin (x)}}
{{1 + \cos (x)}} \cr
& \tan \left( x \right) = \frac{{\sin (2x)}}
{{1 + \cos (2x)}} \cr
& \tan \left( x \right) = \frac{{2\sin (x)\cos (x)}}
{{1 + 2\cos ^2 (x) - 1}} \cr
& \tan \left( x \right) = \frac{{2\sin (x)\cos (x)}}
{{2\cos ^2 (x)}} \cr
& \tan \left( x \right) = \frac{{\sin (x)}}
{{\cos (x)}} \cr}
$

Mischien helpt dat?

Wat dacht je hier van?

$
\eqalign{
& \tan \left( {\frac{x}
{2}} \right) = \frac{{1 - \cos \left( {2x} \right)}}
{{2\sin (x) + \sin (2x)}} \cr
& \tan \left( {\frac{x}
{2}} \right) = \frac{{1 - \left\{ {1 - 2\sin ^2 (x)} \right\}}}
{{2\sin (x) + 2\sin (x)\cos (x)}} \cr
& \tan \left( {\frac{x}
{2}} \right) = \frac{{2\sin ^2 (x)}}
{{2\sin (x) + 2\sin (x)\cos (x)}} \cr
& \tan \left( {\frac{x}
{2}} \right) = \frac{{\sin (x)}}
{{1 + \cos (x)}} \cr}
$

Hetgeen, al met al, bij elkaar, vooral neerkomt op het toepassen van de verdubbelingsformules.

WvR
dinsdag 18 januari 2022

©2001-2024 WisFaq