Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Limiet rationale functie

Volgens de oefening zou in onderstaande functie het domein het getal 2 niet mogen bevatten.

$
\eqalign{f(x) = \frac{{x^3 - x^2 - 14x + 24}}
{{x - 2}}}
$

En dat is ook logisch als ik naar de noemer kijk. Maar als ik deze functie ingeef in mijn grafische rekenmachine, zie ik een gewone parabool en is er bij x=2 wél een beeld. Ik zie geen asymptoot. Hoe kan dat?

Charlo
Overige TSO-BSO - donderdag 19 augustus 2021

Antwoord

Je hebt hier te maken met een perforatie. Er zit, als het ware, een gaatje in de grafiek. We noemen dat ophefbare discontinuiteit.

$
\eqalign{
& f(x) = \frac{{x^3 - x^2 - 14x + 24}}
{{x - 2}} \cr
& f(x) = \frac{{(x - 2)(x - 3)(x + 4)}}
{{x - 2}} \cr
& f(x) = (x - 3)(x + 4) \cr}
$

WvR
donderdag 19 augustus 2021

©2001-2024 WisFaq