Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Wanneer kan je de kettingregel gebruiken?

Neem bijvoorbeeld f(x)=(2x)2

Wanneer je de kettingregel gebruikt kom je tot
2(2x).2 en dit levert 8x op.

Dit is niet goed en moet zijn 4x. Maak ik nu oneigenlijk gebruik van de kettingregel?

Wanneer je bijvoorbeeld (2x+1)2 dan gaat de kettingregel wel goed 2(2x+1).2 en dit levert 8x+4 op.

Wat gaat hier fout?

Willem
Ouder - dinsdag 4 mei 2021

Antwoord

De afgeleide van $f(x)=(2x)^2$ is $f'(x)=8x$:

$
\eqalign{
& f(x) = (2x)^2 \cr
& f'(x) = 2 \cdot \left( {2x} \right)^1 \cdot 2 \cr
& f'(x) = 2 \cdot 2x \cdot 2 \cr
& f'(x) = 8x \cr
& \cr
& f(x) = (2x)^2 \cr
& f(x) = 4x^2 \cr
& f'(x) = 8x \cr}
$

Dus die $4x$ klopt niet...

Naschrift

$
\eqalign{
& f(x) = (2x + 1)^2 \cr
& f'(x) = 2 \cdot (2x + 1) \cdot 2 \cr
& f'(x) = 8x + 4 \cr
& \cr
& f(x) = (2x + 1)^2 \cr
& f(x) = 4x^2 + 4x + 1 \cr
& f'(x) = 8x + 4 \cr}
$

WvR
dinsdag 4 mei 2021

©2001-2024 WisFaq