Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Extremenproblemen

beste kan iemand mij hiermee helpen?Alvast bedankt.

Op een bouwmarkt kan je in de aanbieding 150 m2 tegeltjes voor een zwembad kopen. Je wilt het grootst mogelijke rechthoekige zwembad bouwen, dat je daarmee kunt betegelen (bodem + 4 vier zijwanden). De diepte van het zwembad moet overal 1,45 meter zijn. Bereken de afmetingen van het grootst mogelijke zwembad.

RIk ve
3de graad ASO - zaterdag 1 mei 2021

Antwoord

Hallo Rik,

Stel x=lengte zwembad en y=breedte zwembad. Dan moet je de volgende oppervlaktes betegelen:

Bodem: x·y
Zijwanden lengte: 2·1,45·x = 2,9x
Zijwanden breedte: 2·1,45·y = 2,9y

De totale oppervlakte is 150 m2, dus:

xy+2,9x+2,9y = 150

y isoleren levert:

y = (150-2,9x)/(x+2,9)

Dit betekent: als je voor de lengte de waarde x meter kiest, dan wordt de breedte (150-2,9x)/(x+2,9) meter.

Het zwembad is zo groot mogelijk als de oppervlakte van de bodem zo groot mogelijk is. Voor deze oppervlakte A geldt:

A = x·y
A = x·(150-2,9x)/(x+2,9)

Bepaal bij welke waarde van x de maximale waarde van A wordt bereikt. Dit kan door de afgeleide A' gelijk aan nul te stellen, of door het maximum met behulp van je grafische rekenmachine op te zoeken.
De breedte y vind je dan met de eerder gevonden formule:

y = (150-2,9x)/(x+2,9)

Wat valt op als je x en y met elkaar vergelijkt?

GHvD
zaterdag 1 mei 2021

©2001-2024 WisFaq