Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Minimaliseren van totale materiaalkosten

Voor de totale materiaalkosten geldt de formule: K = 3$\pi$r2 + 4$\pi$r + 1000/r. De vraag is in cm nauwkeurig te berekenen bij welke afmetingen de totale materiaalkosten minimaal zijn. Er werd gevraagd dit met de grafische rekenmachine te doen en dat leverde de volgende maten op: r = 3,54 bij 12,64. Dit antwoord kwam overeen met die uit het antwoordenboekje. Opgelost dus.

Ik wilde met behulp van het bepalen van de afgeleide ook tot dit antwoord komen, maar dat lukte me niet. Ik heb dit als volgt gedaan: 6·2·$\pi$r + 4$\pi$ - 1000/r2 = 0. Dus 6·2·$\pi$·r3 + 4$\pi$ - 1000 = 0. Dus 37,69911184r3 = 1000 - 4$\pi$. Dus 37,69911184r3 = 987,4336294. Dus r3 = 26,19249052. Dus r = 2,97. Dit wijkt behoorlijk af en hoe ik weet niet welke denkfout ik maak.

Joost
Iets anders - donderdag 29 april 2021

Antwoord

K'=6$\pi$r+4$\pi$-1000/r2. Dit 0 stellen levert op r=3,5479
Het gaat fout bij die 6·2

Met vriendelijke groet
JaDeX

jadex
donderdag 29 april 2021

©2001-2024 WisFaq