Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 91821 

Re: Limiet irrationale vorm en schuine raaklijn

Hallo Jan,

De opgave luidt
limiet voor=/- x naar oneindig :
√(x2+4x-2) + x-2.
dat heb ik.

Hier in grote karakters geschreven door (DUS
die student.
(√(x2+4x-2)) +(x-2) met: {(x-2 niet onder wortel}
Zit er dus in mijn rekening iets dat foutief is ...?
Ik geloof het niet.
Goede nacht
Rik

Rik Le
Iets anders - donderdag 25 maart 2021

Antwoord

Hey Rik

We zijn het eens over de opgave en we hebben het nu dus even alleen over de scheve asymptoot rechts.

Ik kom er met jouw berekening niet helemaal uit. Je werkt je een beetje in de problemen. En die scheve asymptoot is er wel degelijk voor x$\to$+$\infty$.

Je eerste stap (delen door x) lijkt me een goede keuze om die m vast te stellen.

Lim x$\to\infty$ (√(x2+4x-2) + (x-2))/x = m. Dat is een goede gedachte. Nu ga je het moeilijk maken door te vermenigvuldigen met √... - (...) Waarom niet gewoon alle termen direct delen door x? Dat is toch veel simpeler? In de noemer blijft dan 1 staan. De teller door x delen levert op: √(1+4/x-2/x2) + 1-2/x en als x$\to\infty$ komt daar dus gewoon 2 uit. Klaar.

Nu die b nog. Bepaal daarvoor lim x$\to\infty$ √(x2+4x-2) + (x-2) - 2x = lim x$\to\infty$ √(x2+4x-2) - (x+2). Nu wel boven en onder de streep vermenigvuldigen met √(x2+4x-2) + (x+2) en je ziet dat daar dan voor die b de uitkomst 0 is.

En dit is nu wel het bewijs. ps die horizontale asymptoot is er links dus ook.

Met vriendelijke groet
JaDeX

jadex
vrijdag 26 maart 2021

 Maximaliseren van economische functie 

©2001-2024 WisFaq