Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 91744 

Re: Onafhankelijkheid bewijzen

Ohh dankjewel. Klopt het dan dat je bij het bepalen van een onafhankelijkheid de kansen altijd moet nemen op 100%, dus op het échte totaal? Hier staat alles op 1944 namelijk.

elke
Student Hoger Onderwijs België - dinsdag 16 maart 2021

Antwoord

Hallo Elke,

Ik weet niet wat je bedoelt met "kansen op 100% nemen". Dit is nogal een vage uitspraak, het lijkt me gevaarlijk om zo een eigen regeltje te verzinnen.

Ik neem aan dat jouw twijfel over de tweede rekenwijze gaat. De kern is:

Twee gebeurtenissen A en B zijn onafhankelijk wanneer geldt:
P(A)·P(B) = P(A en B)
  • Je berekent dus P(A) (op welke wijze dan ook, afhankelijk van het vraagstuk);
  • Je berekent ook P(B) (op welke wijze dan ook, afhankelijk van het vraagstuk);
  • Je vermenigvuldigt deze kansen met elkaar.
Daarnaast bereken je P(A en B). Als dit dezelfde uitkomst geeft als bovengenoemde vermenigvuldiging, dan zijn de gebeurtenissen onafhankelijk. Zijn de uitkomsten ongelijk, dan zijn de uitkomsten afhankelijk.

GHvD
dinsdag 16 maart 2021

©2001-2024 WisFaq