Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Limiet van een goniometrische functie

Goede dag,
Ik heb een lijst van 16 limieten over goniometrische functies kunnen oplossen zonder veel denkwerk.
Maar twee oefeningen spelen mij parten .
a) limiet(3x3+2tan2x)/(2x3-3sin2x)met x evolueert naar NUL
Met x3 buiten haken te zetten kom ik er zo te zien niet.
b)Lim(3x3+2cos2x)/(2x3+3sin2x metx evolutie naar NUL.
Ook x3 buiten haken halen in teller en noemer levert voor mij geen tastbaar resultaat op .Of moet het toch zo gebeuren ?
Met vriendelijke groeten en graag enige goede raad...
Rik

Rik Le
Iets anders - donderdag 4 maart 2021

Antwoord

Bij a) helpt het buiten de haken halen van $x^2$, je krijgt dan
$$\lim_{x\to0}\frac{3x+2\left(\frac{\tan x}{x}\right)^2}
{2x-3\left(\frac{\sin x}{x}\right)^2}
$$met daarin de standaardlimieten $\lim_{x\to0}\frac{\tan x}{x}$ en $\lim_{x\to0}\frac{\sin x}{x}$.

Bij b) lijkt mij dat de limiet niet bestaat: de teller heeft limiet $2$, de noemer limiet $0$.

kphart
donderdag 4 maart 2021

 Re: Limiet van een goniometrische functie 

©2001-2024 WisFaq