Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

De kromming van een functie

Ik heb de functie hieronder:

$\eqalign{
- \frac{{\sqrt 5 x - \sqrt 5 -x + 1}}
{{2x + \sqrt 5 - 1}}
}$

Deze functie gaat door de punten (0,1) en (1,0). Nu wil ik dat deze functie een sterkere of zwakkere kromming krijgt, terwijl de functie wel door de punten (0,1) en (1,0) blijft gaan.
  • Hoe kan ik dat berwerkstelligen?

Ad van
Docent - zondag 29 november 2020

Antwoord

Volgens mij kan je translatie van Het vinden van een functie gebruiken voor elke willekeurige functie van dezelfde vorm als $\eqalign{f(x)=\frac{1}{2x}}$ met grotere of kleinere kromming.

Voorbeeld

Voor $\eqalign{f(x)=\frac{1}{3x}}$ krijg je dan:

$
\eqalign{f(x) = \frac{{\left( {\sqrt 3 - \sqrt 7 } \right)\left( {x - 1} \right)}}
{{2\sqrt 3 \cdot x + \sqrt 7 - \sqrt 3 }}}
$



Het algemene geval

De functie $
\eqalign{f(x) = \frac{1}
{{cx}}}
$ snijden met $
y = x - 1
$ geeft:

$
\eqalign{
& x = \frac{{\sqrt {c(c + 4)} + c}}
{{2c}} \cr
& y = \frac{{\sqrt {c(c + 4)} - c}}
{{2c}} \cr}
$

Dat geeft dan een vergelijking van de getransleerde kromme:

$
\eqalign{
& y + \frac{{\sqrt {c(c + 4)} - c}}
{{2c}} = \frac{1}
{{c\left( {x + \frac{{\sqrt {c(c + 4)} - c}}
{{2c}}} \right)}} \cr
& y = \frac{1}
{{cx + \frac{1}
{2}\sqrt {c(c + 4)} - \frac{1}
{2}c}} - \frac{{\sqrt {c(c + 4)} - c}}
{{2c}} \cr
& y = \frac{1}
{{cx + \frac{1}
{2}\sqrt {c(c + 4)} - \frac{1}
{2}c}} - \frac{{\sqrt {c(c + 4)} }}
{{2c}} + \frac{1}
{2} \cr}
$

Dat moet het dan zijn.

WvR
zondag 29 november 2020

©2001-2024 WisFaq