Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Afgeleide

f(x)=Bgsin(3x/2)+√(4-9x2)/(3x)
Kunt u aub mij helpen met deze vraag?

Riffat
3de graad ASO - vrijdag 6 november 2020

Antwoord

Ik heb een paar aanwijzingen voor je:

$
\eqalign{
& f(x) = \arcsin (x) \to f'(x) = \frac{1}
{{\sqrt {1 - x^2 } }} \cr
& g(x) = \arcsin \left( {\frac{{3x}}
{2}} \right) \to g'(x) = ... \cr
& h(x) = \frac{{\sqrt {4 - 9x^2 } }}
{{3x}} \to h'(x) = \frac{{\left[ {\sqrt {4 - 9x^2 } } \right]' \cdot 3x - \sqrt {4 - 9x^2 } \cdot \left[ {3x} \right]'}}
{{\left( {3x} \right)^2 }} \cr}
$

Wij noemen de bgsin() altijd arcsin(). Het gaat hier om de afgeleide van de arcsin(), de kettingregel en de quotiëntregel. Wat is dan precies het probleem?Of lukt het zo wel?

WvR
vrijdag 6 november 2020

©2001-2024 WisFaq