Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Buigpunt bepalen

Ik heb een opgave: 'bepaal a,b element van R zodat (-1,1) behoort tot de grafiek van f(x)=ax3+bx2 en een buigpunt bereikt in 1/3.

Ik weet al dat voor een buigpunt je tweede afgeleide gelijk moet zijn aan nul, dus ik heb als tweede afgeleide f''(x)= 6ax+2b, maar hoe moet ik nu verder? Ik dacht er dus aan om f'' gelijk te stellen aan nul maar daar kan ik niet meer verder.

Mel
Student universiteit België - woensdag 4 november 2020

Antwoord

Je weet twee dingen:
  • Het punt $(-1,1)$ ligt op $f$. Invullen geeft -a+b=1.
  • f''($\frac{1}{3}$)=0 en dat geeft 2a+2b=0
Wel aan! Twee vergelijkingen met twee onbekenden? Dat komt me bekend voor...

Lukt het dan?

WvR
woensdag 4 november 2020

 Re: Buigpunt bepalen 

©2001-2024 WisFaq