Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 90814 

Re: Re: Limiet naar oneindig

hmm, ja ik begrijp de redenering nu wel, maar ik begrijp niet hoe je aan die uitwerking komt van e^-x , zou je mij die uitwerking willen uitleggen?

Melike
Student universiteit België - woensdag 28 oktober 2020

Antwoord

Als je bedoelt: waarom $\lim_{x\to\infty}x^2e^{-x}=0$?
Plat gesproken: er staat $x^2/e^x$ en $e^x$ gaat (veel) sneller naar oneindig dan $x^2$, dus het quotient heeft limiet $0$.
Netjes uitgewerkt: we hebben gezien dat
$$e^x\ge \frac1{3!}x^3
$$en dus
$$0\le x^2e^{-x}=\frac{x^2}{e^x}\le \frac{x^2}{x^3/3!}=\frac6x
$$maar $\lim_{x\to\infty}\frac6x=0$, klaar

kphart
woensdag 28 oktober 2020

©2001-2024 WisFaq