Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 90627 

Re: Asymptoten

Hoi, ik snap het tot een bepaalde stap. Vanaf het moment dat je verheft tot een vierkantswortel bij de 3e stap ben ik hem weer kwijt. Hoe komt in de 3e stap de x2 in de noemer? Waarom geldt de vierkantswortel voor heel de breuk?

Als ik het niet te moeilijk maak zou je dan b. ook willen uitwerken?

Melike
Student universiteit België - donderdag 8 oktober 2020

Antwoord

Volgens de theorie:

$
\eqalign{
& {\text{asymptoot}}:y = ax + b \cr
& a = \mathop {\lim }\limits_{x \to \infty } \frac{{ - x - \sqrt {x^2 - 9} }}
{x} \cr
& b = \mathop {\lim }\limits_{x \to \infty } - x - \sqrt {x^2 - 9} - ax \cr}
$

Je krijgt dan (helemaal uitgeschreven):

$
\eqalign{
& a = \mathop {\lim }\limits_{x \to \infty } \frac{{ - x}}
{x} - \frac{{\sqrt {x^2 - 9} }}
{x} \cr
& a = \mathop {\lim }\limits_{x \to \infty } - 1 - \frac{{\sqrt {x^2 - 9} }}
{{\sqrt {x^2 } }} \cr
& a = \mathop {\lim }\limits_{x \to \infty } - 1 - \sqrt {\frac{{x^2 - 9}}
{{x^2 }}} \cr
& a = \mathop {\lim }\limits_{x \to \infty } - 1 - \sqrt {\frac{{x^2 }}
{{x^2 }} - \frac{9}
{{x^2 }}} \cr
& a = \mathop {\lim }\limits_{x \to \infty } - 1 - \sqrt {1 - \frac{9}
{{x^2 }}} = - 1 - \sqrt 1 = - 2 \cr}
$

Als je de teller wilt delen door $x$ dan deel je onder het wortelteken door $x^2$. Vandaar!

Als je $a$ berekend hebt dan kan je $b$ bepalen:

$
\eqalign{
& b = \mathop {\lim }\limits_{x \to \infty } - x - \sqrt {x^2 - 9} + 2x \cr
& b = \mathop {\lim }\limits_{x \to \infty } x - \sqrt {x^2 - 9} = 0 \cr
& {\text{asymptoot}}:y = - 2x \cr}
$

...en dan ben je er...

Naschrift

Ik gebruik bij de uitwerking de volgende formules:

$
\eqalign{
& \frac{{a + b}}
{c} = \frac{a}
{c} + \frac{b}
{c} \cr
& \frac{{\sqrt a }}
{{\sqrt b }} = \sqrt {\frac{a}
{b}} \cr}
$

Hopelijk lukt het zo. Anders maar weer verder vragen.

WvR
donderdag 8 oktober 2020

©2001-2024 WisFaq