Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 90392 

Re: Som van oneindig meetkundige reeks

DDag Klaas-Pieter,
Dat had ik natuurlijk moeten zien (wat ijn , je eerste zin staat geschreven.
ER zijn dus 2 gevallen
Voor -1$\le$x$\le$+1 geldt mijn gebruikte formule
Voor de andere gevallen geldt de Tweede en laatste die je genoteerd hebt.
Klaar en netjes opgelost.
Graag nog wat uitleg over de tweede som als het kan.
Dank voor je uitgebreid antwoord en voor het gebruik van je, ongetwijfeld, kostbare tijd !
Groetjes

Rik Le
Iets anders - woensdag 26 augustus 2020

Antwoord

Oppassen: de formule geldt alleen als
$$-1 < r < 1
$$(strikte ongelijkheid).

Wat de tweede som betreft: de $S_n$-en zijn beurtelings positief ($n$ oneven) en negatief ($n$ even), en hun absolute waarden gaan naar oneindig. Bij elkaar geeft dat dat de limiet niet bestaat.

kphart
woensdag 26 augustus 2020

©2001-2024 WisFaq