Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 90169 

Re: Aantonen dat een 4e punt op een cirkel ligt

De gelijkvormigheid van ΔABC en ΔA'BC' doet me denken aan het feit dat A'C' antiparallel is met AC (immers het lijnstuk dat 2 voetpunten van hoogtelijnen in een driehoek, verbindt is antiparallel met de 3e zijde, waar geen voetpunt is op gelegen). Automatisch is DE dan ook antiparallel met AC (immers DE // A'C').

Om het verhaal rond te krijgen zou ik dan nog moeten kunnen bewijzen dat CD antiparallel met AE. Immers ik kan dan steunen op volgende stelling: "Vier punten A, B, D en E, waarvan er geen drie op dezelfde lijn liggen, liggen op een cirkel dan en slechts dan als de paren rechten (DE,AC) en (CD,AE) antiparallel zijn."

VRAAG: Hoe slaag ik er in om aan te tonen dat CD en AE ook antiparallel zijn? Dacht u zelf ook aan 'antiparallel' of dacht u aan een andere invalshoek met vorige tip??
Ik vrees dat ik opnieuw ben vast gelopen.

Hartelijk dank voor jullie tussenkomst.

Jan He
Ouder - maandag 29 juni 2020

Antwoord

Hallo Jan,

Volgens mij had je toch al bijna de tweede denkpiste uit je vraag?

We zagen immers $\bigtriangleup\; ABC \sim \bigtriangleup\; A'BC'$. Maar natuurlijk geldt ook $\bigtriangleup\; A'BC' \cong \bigtriangleup\; EBD$. En dus geldt $\angle ACE = \angle ADE$ zodat dit omtrekshoeken zijn op koorde $AE$.

Met vriendelijke groet,

FvL
maandag 29 juni 2020

©2001-2024 WisFaq