Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 62049 

Re: Integreren van ln functie

Ik kom ook niet goed uit het berekenen van ln(2x). Toen ik bij de antwoorden keek stond hier:

1/2(2x ln(2x) - 2x)

Klopt dit? En zo ja, hoe bereken je dat dan?

Lieve
Leerling bovenbouw havo-vwo - vrijdag 29 mei 2020

Antwoord

Dit klopt wel, maar dat is niet de handigste manier.

Bij logaritmes moet je altijd gebruik maken van zijn kracht: een logaritme maakt van een vermenigvuldiging een optelling!
Een optelling is meestal veel handiger dan een vermenigvuldiging.

Dus zodra je ziet staan: ln(2x) bedenk dan dat dit hetzelfde is als ln(2) + ln(x)

De integraal hiervan is dus de integraal van ln(2) plus de integraal van ln(x). Omdat ln(2) een getal is (een constante) kun je de integraal eenvoudig berekenen.

De integraal van ln(x) is een standaardintegraal.
(Of je kunt hem berekenen met partiële integratie.)

Je krijgt dus:

$
\eqalign{
& \int {\ln (2x)\,dx = } \cr
& \int {\ln (2)\,dx + \int {\ln (x)\,dx = } } \cr
& \ln (2) \cdot x + x \cdot \ln (x) - x + C \cr}
$

Eventueel kun je dit nog omschrijven in dezelfde vorm zoals in het gegeven antwoord, maar dat is niet nodig.

Anneke
vrijdag 29 mei 2020

©2001-2024 WisFaq