Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 89648 

Re: Re: Examenopgave mbo 82-83

Dat heb ik verkeerd overgenomen. Ik geloof het wel. Ik ga de opgave niet helemaal opnieuw maken.

mboudd
Leerling mbo - zaterdag 18 april 2020

Antwoord

Heel verstandig...

De rest was prima. Je krijgt de uitwerking van mij:

$
\eqalign{
& V = \left( {\matrix{
3 \cr
3 \cr
0 \cr

} } \right) + \lambda \left( {\matrix{
1 \cr
0 \cr
0 \cr

} } \right) + \mu \left( {\matrix{
1 \cr
1 \cr
{ - 1} \cr

} } \right) \to y + z = 3 \cr
& BCT = \left( {\matrix{
{ - 3} \cr
3 \cr
0 \cr

} } \right) + \rho \left( {\matrix{
0 \cr
1 \cr
0 \cr

} } \right) + \tau \left( {\matrix{
1 \cr
1 \cr
3 \cr

} } \right) \to 3x - z = - 9 \cr
& \left\{ \matrix{
y + z = 3 \cr
3x - z = - 9 \cr} \right. \cr
& x = \lambda \cr
& \left\{ \matrix{
y + z = 3 \cr
3\lambda - z = - 9 \cr} \right. \cr
& \left\{ \matrix{
y + z = 3 \cr
z = 3\lambda + 9 \cr} \right. \cr
& \left\{ \matrix{
y + 3\lambda + 9 = 3 \cr
z = 3\lambda + 9 \cr} \right. \cr
& \left\{ \matrix{
y = - 3\lambda - 6 \cr
z = 3\lambda + 9 \cr} \right. \cr
& s = \left( {\matrix{
0 \cr
{ - 6} \cr
9 \cr

} } \right) + \lambda \left( {\matrix{
1 \cr
{ - 3} \cr
3 \cr

} } \right) \cr
& l = \left( {\matrix{
3 \cr
{ - 3} \cr
0 \cr

} } \right) + \lambda \left( {\matrix{
1 \cr
{ - 3} \cr
3 \cr

} } \right) \cr}
$

Goed gedaan...

WvR
zaterdag 18 april 2020

©2001-2024 WisFaq