Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 89605 

Re: Re: Re: Constructies van vijfhoek en zeshoek

Dus er is een iets aan de hand als n (n-hoek) oneven en n even is. Hoe zullen we dat formuleren?

Hier komen bepaalde vragen aan de boord die ik nog niet begrijp.
  1. Als wij veralgemeniseren: als er een n-hoek bestaat, hoe vinden we die dan?
    Dus hoe kunnen we bijvoorbeeld P1 synthetisch vinden, gegeven M1, M2, M3, ..., Mn?
  2. En hoe hangt P1 algebraïsch af van M1, M2, M3, ..., Mn?
  3. Of is P1 misschien vrij te kiezen (en voldoen er dus oneindig veel n-hoeken)?
Tot heden zie ik het nog niet. Graag jouw hulp daarvan. Alvast bedankt.

De groeten van M.

M
Student hbo - dinsdag 14 april 2020

Antwoord

n is oneven

Bij een oneven aantal middelpunten kan je een mogelijk beginpunt berekenen door de $x$ en $y$ om en om op te tellen en af te trekken. Hier bestaat een $P_1$, maar je kunt dat niet vrij kiezen.

Voorbeeld

q89608img1.gif

x = 2 - 4 + 6 - 4 + 1 = 1
y = 1 - 1 + 3 - 5 + 5 = 3

Dat punt $P_1$ moet dan (1,3) zijn.

q89608img2.gif

n is even

Ik vermoed dat bij een even aantal middelpunten die een zeshoek opleveren moet gelden dat de x en y bij optellen/aftrekking beide uitkomen op nul. Er is dus niet altijd een mogelijk beginpunt.

Voorbeeld

q89608img3.gif

x = 2 - 4 + 6 - 4 + 1 - 1 = 0
y = 1 - 1 + 3 - 5 + 5 - 3 = 0

Maar dat laatste moet je dan nog aantonen!

Nu jij weer!

WvR
dinsdag 14 april 2020

 Re: Re: Re: Re: Constructies van vijfhoek en zeshoek  

©2001-2024 WisFaq