Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 89562 

Re: Examenopgave mbo 78-79 (2)

Bij e. staan nu de normaalvectoren een twee vlakken loodrecht op elkaar of want ik begrijp de tekening in mijn boek niet en waarom lukt het niet om een vlak te vinden als ik de vergelijkingen van alfa en TAB van elkaar afhaal:

Alfa: 3x-2z=0
Tab: 3x +2z-12=0-
6x-12=0
x=2 en z=3
Maar hier is geen vectorvoorstelling van te maken.

mboudd
Leerling mbo - vrijdag 10 april 2020

Antwoord

Je weet nu dat $x=2$ en $z=3$. Dan blijft alleen $y$ als variabele over. De richtingsvector gelijk is aan $
\left( {\begin{array}{*{20}c}
0 \\
1 \\
0 \\
\end{array}} \right)
$. De lijn loopt evenwijdig aan de $y$-as. Het punt (2,0,3) ligt op de lijn, dus dat is dan meteen een mooie steunvector. Een vectorvoorstelling voor de gevraagde lijn:

$
\left( {\begin{array}{*{20}c}
x \\
y \\
z \\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
2 \\
0 \\
3 \\
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}c}
0 \\
1 \\
0 \\
\end{array}} \right)
$

Dat moet het zijn!

WvR
zaterdag 11 april 2020

©2001-2024 WisFaq