Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 89446 

Re: Re: Hoe zou ik dit kunnen bewijzen?

Bedankt, ja klopt ik bedoelde orthogonaal complement, had dat inderdaad misschien moeten aangeven.

Echter, als ik moet aantonen dat Rn de som van de deelruimten van W en V, moet ik dan iets met een tensor-product ofzo doen, dat zag ik namelijk eerder voorbij komen, maar weet nog niet wat dat is eigenlijk

steven
Student universiteit - vrijdag 27 maart 2020

Antwoord

Als ik jou was zou ik het boek nog maar eens goed bestuderen, in het bijzonder de som van deelruimten.
Als $A$ en $B$ deelruimten zijn van $\mathbb{R}^n$ is de som van $A$ en $B$ gedefinieerd als
$$A+B=\{a+b:a\in A, b\in B\}
$$In het geval van je vraag moet je laten zien dat $W+V=\mathbb{R}^n$, dat wil dus zeggen dat elke vector $x$ te schrijven is als $w+v$ met $W\in W$ en $v\in V$.
Daar heeft het tensorproduct vooralsnog niets mee te maken.

kphart
vrijdag 27 maart 2020

©2001-2024 WisFaq