Ik krijg l=6/11 maar het model geeft l=5/11. Is dit een foutje in het model? Moet ik voor de verhouding BP:PC per sé |BP| en |PC| berekenen of kan het handiger?
Gegeven is driehoek ABC met A(0,0); B(6,2) en C(-5,5)
Bepaal een vectorvoorstelling van lijn BC BC:(6,2)+l(-11,3) had ik goed.
P is het snijpunt van lijn BC met de y-as. Bepaal de waarden van l die behoort bij punt P. Ik had P:x=0 $\Rightarrow$ 6-11l=0 l= 6/11 in het model stond 5/11 hoe kan dit?
Bereken de verhouding BP:PC
Geef een vectorvoorstelling van de deellijn van hoek BAC.
mboudd
Leerling mbo - dinsdag 24 maart 2020
Antwoord
Die $\eqalign{\frac{6}{11}}$ lijkt me goed. 't Is een schrijffoutje in het antwoordmodel. Dat kan de beste overkomen...
De verhouding BP:PC is dezelfde verhouding als de verhouding van de rechthoekszijden:
Gezien de $x$-coördinaten zal de verhouding wel $\eqalign{\frac{6}{5}}$ moeten zijn. Toch?