Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 89327 

Re: Driehoek ABC (examenopgave mbo)

Ik heb bij c, de coördinaten van het hoogtepunt uitgerekend. Bij d. weet ik niet wat ik verkeerd doe met de deellijn uit B.

Die deellijn stel ik op (p,q). Als het goed is moet dan in de driehoek gelden (uitgaande van de vectorvoorstellingen):

AB:=(-5,0)+l(2,-1)
BC:=(3,-4)+m(-1,2)

Ik stel het inproduct tussen de deellijn p,q en de richtingsvectoren van AB en BC:

cos$\Phi$1=(2p-q)/√(5)·√(p2+q2)
cos$\Phi$2=(-p+2q)/√(5)·√(p2+q2)

Waaruit volgt de richtingsvector (1,1)
En de vectorvoorstelling van de deelijn (3,-4)+e(1,1)
En dus de vergelijking x-y-7=0

Maar het model geeft: x+y+1=0 wat doe ik fout?

mboudd
Leerling mbo - vrijdag 20 maart 2020

Antwoord

Voor de richtingsvector van d neem je de 2 vectoren vanuit B met dezelfde lengte. Daarbij is de richting dus wel van belang!

$
v_d = \left( {\begin{array}{*{20}c}
{ - 2} \\
1 \\
\end{array}} \right) + \left( {\begin{array}{*{20}c}
{ - 1} \\
2 \\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
{ - 3} \\
3 \\
\end{array}} \right)
$

q89374img1.gif

En dan komt het allemaal goed:

$
\begin{array}{l}
d:\left( {\begin{array}{*{20}c}
x \\
y \\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
3 \\
{ - 4} \\
\end{array}} \right) + \lambda \left( {\begin{array}{*{20}c}
{ - 1} \\
1 \\
\end{array}} \right) \\
\left\{ \begin{array}{l}
x = 3 - \lambda \\
y = - 4 + \lambda \\
\end{array} \right. \\
x + y = - 1 \\
x + y + 1 = 0 \\
\end{array}
$

WvR
zaterdag 21 maart 2020

©2001-2024 WisFaq