Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Oppervlakte tussen twee krommen

Het wil mij niet lukken om de snijpunten te vinden tussen de krommen y2=ax en 2x + 3y = 2a voor een zekere a $>$ 0. Dit doe ik omdat ik de oppervlakte wil berekenen die wordt ingesloten tussen deze twee krommen. Is er hier zo’n truuk voor die ik over het hoofd zie?

Arjan
Student universiteit - zaterdag 18 januari 2020

Antwoord

Vermenigvuldig de tweede vergelijking met a wat 2ax + 3ay = 2a2 geeft. Vermenigvuldig de eerste met 2 wat geeft 2y2 = 2ax. In beide vergelijkingen zit nu de term 2ax die door een aftrekking of optelling gaat verdwijnen.

Je vindt 2y2 + 3ay -2a2 = 0 ofwel
(2y - a)((y + 2a) = 0 waaruit volgt y = 1/2a of y = -2a
Substitutie in een van de twee gegeven vergelijkingen levert de bijpassende x-waarde.

Drie opmerkingen:
1) De vermenigvuldiging met a is ‘veilig’ want a $>$ 0
2) De laatste ontbinding kan vermeden worden door op de tweedegraads vergelijking de abc-formule toe te passen.
3) Uiteraard kan het volledig anders. Uit de eerste vergelijking is de variabele x direct vrij te maken waarna je in de tweede vergelijking de x hierdoor kunt vervangen. Het geeft nauwelijks meer werk dan de nu gevolgde route.

MBL
zaterdag 18 januari 2020

©2001-2024 WisFaq