Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Deling en rest

Hallo,

In een bewijs kwam ik de volgende zin tegen : (Het getal 8n + 3 kan geschreven worden als som van drie kwadraten.)
Omdat kwadraten bij deling door 8 rest 0, 1 of 4 opleveren zijn die kwadraten oneven.

Deze laatste zin snap ik niet: Is het altijd zo dat je een rest 0, 1 of 4 hebt als je een kwadraat deelt door 8 (wanneer ik dit zelf uitprobeer merk ik dat dit niet altijd klopt?) en waarom is je kwadraat hierdoor oneven? Alvast bedankt ! Mvg.

febe
3de graad ASO - zondag 5 januari 2020

Antwoord

Kijk naar de kwadraten van de vorm $(8n+i)^2$ met $i=0,1,2,3,4,5,6,7$; dan heb je alle mogelijke resten gezien: $(8n+i)^2=64n^2+16ni+i^2=8(8n^2+2ni)+i^2$. Als de resten van $0^2$, $1^2$, $\dots$, $7^2$ bepaalt krijg je achtereenvolgens $0,1,4,1,0,1,4,1$.

kphart
zondag 5 januari 2020

©2001-2024 WisFaq