\require{AMSmath} Dit is een reactie op vraag 88455 Re: Re: Berekenen van onbekende a en b Sorry maar wat u doet snap ik, maar de waarde van a en b berekenen lukt me nog niet. mboudd Leerling mbo - dinsdag 17 september 2019 Antwoord Met behulp van substitutie:$\begin{array}{l} \left\{ \begin{array}{l} - \frac{1}{2}a + b = 0 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} - \frac{1}{2} \cdot \left( {2\sqrt b } \right) + b = 0 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} - \sqrt b + b = 0 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b = \sqrt b \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b^2 = b \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b^2 - b = 0 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b\left( {b - 1} \right) = 0 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b = 0 \\ a = 2\sqrt b \\ \end{array} \right. \vee \left\{ \begin{array}{l} b = 1 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b = 0 \\ a = 0 \\ \end{array} \right.(v.n.) \vee \left\{ \begin{array}{l} b = 1 \\ a = 2 \\ \end{array} \right. \\ \left\{ \begin{array}{l} a = 2 \\ b = 1 \\ \end{array} \right. \\ \end{array}$Hoe moelijk kan dat zijn? WvR dinsdag 17 september 2019 Re: Re: Re: Berekenen van onbekende a en b ©2001-2024 WisFaq
\require{AMSmath}
Sorry maar wat u doet snap ik, maar de waarde van a en b berekenen lukt me nog niet. mboudd Leerling mbo - dinsdag 17 september 2019
mboudd Leerling mbo - dinsdag 17 september 2019
Met behulp van substitutie:$\begin{array}{l} \left\{ \begin{array}{l} - \frac{1}{2}a + b = 0 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} - \frac{1}{2} \cdot \left( {2\sqrt b } \right) + b = 0 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} - \sqrt b + b = 0 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b = \sqrt b \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b^2 = b \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b^2 - b = 0 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b\left( {b - 1} \right) = 0 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b = 0 \\ a = 2\sqrt b \\ \end{array} \right. \vee \left\{ \begin{array}{l} b = 1 \\ a = 2\sqrt b \\ \end{array} \right. \\ \left\{ \begin{array}{l} b = 0 \\ a = 0 \\ \end{array} \right.(v.n.) \vee \left\{ \begin{array}{l} b = 1 \\ a = 2 \\ \end{array} \right. \\ \left\{ \begin{array}{l} a = 2 \\ b = 1 \\ \end{array} \right. \\ \end{array}$Hoe moelijk kan dat zijn? WvR dinsdag 17 september 2019
WvR dinsdag 17 september 2019
©2001-2024 WisFaq