Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Hyperbolische tangens

Goede middag,
Ik ben bezig met een vraagstuk over differentiaal- vergelijkingen en toepassingen.
Alles gaat goed maar ik heb nu een probleem ontdekt en kan het niet goed analyseren.
Er is in mijn oplossing van een probleem een redenering die ik niet goed kan volgen..
Een snelheid:
v= 23((1-e^-0.85t)/(1+e^-0.85t)) stelt men gelijk aan
v= 23( tan(h)(0,43 t)).**(0,43 ontgaat mij volkomen hoe men dat bekomt)
Nu weet ik wel dat :
tan(h)(x)= (1-e^(-2x)/(1+e^-2x)
of:
tan(h(x) =(e^2x-1)/(e^2x+1).
Wat men uitlegt bij de ** , begrijp ik niet. Waarschijnlijk ben ik niet theoretisch genoeg op de hoogte hoe dat in mekaar steekt. En driehoeksmeting heeft een tijd stil gelegen...Sorry.
Wie zet mij een beetje op weg ?
Groeten

Rik Le
Iets anders - zaterdag 24 augustus 2019

Antwoord

Ik denk dat het niet meer is dan dat $0.85/2$ afgerond gelijk genomen wordt aan $0.43$.
Je hebt
$$\tanh x=\frac{e^{2x}-1}{e^{2x}+1}=\frac{1-e{-2x}}{1+e^{-2x}}
$$en
$$v=23\frac{1-e^{-0.85t}}{1+e^{-0.85t}}
$$Met $2x=0.85t$ krijg je $x=0.425t$, afgerond dus $x=0.43t$.

kphart
zaterdag 24 augustus 2019

©2001-2024 WisFaq