Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Differentiaalvergelijking

De oplossing van A'(x)(1-x)=x A'(x) is een e-macht, helaas zie ik niet hoe ik dit kan inzien. Kan iemand mij dit uitleggen?

Tom
Student hbo - donderdag 2 mei 2019

Antwoord

Je kunt altijd een voorgestelde oplossing controleren door invullen. Als iemand zegt "$A(x)=e^x$ is een oplossing" vul dat dan maar in in de vergelijking. Als het resuktaat klopt dan had die iemand gelijk, als het niet klopt dan niet.

Hier krijg je echter, na invulling
$$
e^x(1-x)=x e^x
$$en dat lijkt me niet te kloppen.

Ik denk dat je de DV verkeerd hebt overgeschreven, je kunt hem omschrijven tot $A'(x)(1-2x)=0$. Dat betekent weer dat $A'(x)=0$ als $x\neq\frac12$ en dat heeft alleen constante functies als oplossingen.

kphart
donderdag 2 mei 2019

 Re: Differentiaalvergelijking 

©2001-2024 WisFaq