In je derde vergelijking ontbreekt nog een z2 (want (0-z)2 = z2, en niet 0).
Als je een van de vier vergelijkingen van alle andere aftrekt, kan je via het merkwaardig product a2-b2 = (a-b)(a+b) alle paren kwadraten (in resp. x, y en z) vereenvoudigen: de kwadraten vallen weg en je krijgt drie lineaire vergelijkingen in de drie onbekenden x, y en z. Los dat stelsel op en gebruik tot slot nog een van de vier oorspronkelijke vergelijkingen om r te vinden.