Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 87733 

Re: Een massa aan een veer

Dag JS,
Ik redeneerde als volgt=
a=d2x(t)/dt2=-kx(t) met a is de versnelling(2 de afgeleide )komt voort van F=ma(2de wet Newton)
Nu is de snelheid v gelijk aan:
v=dx/dt--5/100INT(x(t)(k=5 en m=100 )
dx=-1/20INT x(t)dt
dx= -1/40x2(t)+C(1)
x(t)=(-1/40)x^3/3+C()x+C(2)
x(t)=-(1/120)x^3+C(1)x+C(2)
Maar is dit wel juist??
Anderzijds begrijp ik ook een voorstelling van:
x(t) =asin(wt)
dx/dt)=Awcos(wt)
=d2x(t)/dt2=a= -Aw2sin(wt)
OP een teken na is dit dezelfde functie als in x(t). Dus , de tweede afgeleide is ,op een minteken na, gelijk aan(x(t)
Maar voor de verdere afwerking heb ik nog wel je hulp nodig, als dat mogelijk is. Ik heb het gevoel maar wat rond te dobberen en zou toch met "mijn bootje" weer aan wal willen gaan.
Groetjes
Rik

Rik Le
Iets anders - maandag 18 maart 2019

Antwoord

Die derdegraadsfunctie is alleszins verkeerd. Vul maar eens in de DV in, dan zie je meteen dat dat niet klopt.

De situatie met sinus is wel juist. Als je deze x(t) in de DV invult zie je dat $\omega^2=\frac{k}{m}$. Bepaal nu $k$, $m$ is al gegeven, dus $\omega$ valt snel te bepalen. Je kunt hier de periode en frequentie mee bepalen, en dus snel een antwoord op b) vinden.
Om a) op te lossen moet je eerst een vergelijking voor de snelheid afleiden $\dfrac{dx}{dt}=v_x(t)=A\omega\cos \omega t $. Aangezien de snelheid in het evenwichtspunt een maximum (of minimum) bereikt, vind je $v_{\rm max}=A\omega$. Nu kun je dus $A$ bepalen en heb je de gezochte bewegingsvergelijking.

js2
dinsdag 19 maart 2019

©2001-2024 WisFaq